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Abstract

In the present investigation, Raman and IR spectroscopy were used to study the surface
structures of chromium oxide supported on alumina, titania, zirconia, and silica, as a function of
the loading under dehydrated conditions. It was found, that the dehydrated surface structures of
chromium oxide differ strongly from those previously reported under ambient conditions, in which
the surfaces are hydrated. Two species, each possessing one short terminal Cr=0 bond, and one
(ormore) oligomer (s) are proposed to be present on the dehydrated alumina, titania, and zirconia
surfaces. The relative concentrations of these different chromium oxide species is independent of
the surface coverage. The chromium oxide species present on the dehydrated silica surface are
completely different from those observed on the other three supports. The Raman and IR spectra
indicate the presence of an isolated chromium oxide species possessing two short Cr=0 bonds
together with a small amount of surface species possessing a terminal CrOj; unit, isolated or not.
The gradual disappearance of the surface hydroxyl groups of all four supports upon addition of
chromium oxide, as monitored by IR spectroscopy, suggests that the chromium oxide species
interacts with the surface by removal of the surface hydroxyl groups.

Keywords: alumina; chromium; silica; supported catalysts; titania; zirconia

Introduction

Supported chromium oxide catalysts are known to possess excellent activ-
ity for the hydrogenation and dehydrogenation reactions of hydrocarbons, the
dehydrocyclization of paraffins, and the polymerization of olefins [1]. It is now
well established, that the catalytic properties of these systems are due to sur-

~ face chromium oxide species, and not to bulk chromium oxides such as crys-
| talline CrO; or Cr,0; [2]. This knowledge has led to much interest in the
L molecular structures of the supported chromium oxide species, and the factors

which determine the chromium oxide surface structures [2-21]. Many tech-

*Corresponding author.
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niques have been used to characterize the chromium oxide surface structures,
but especially Raman spectroscopy has shown to be a powerful technique to
obtain detailed structural information (17-21].

A program has been started by our laboratories to study the support chro-
mium oxide system by Raman spectroscopy as a function of surface coverage,
support type, calcination temperature, and presence of moisture [19-21]. These
Raman studies showed that after calcination at 500°C and re-exposure to the
laboratory atmosphere several hydrated surface chromium oxide species are
present on oxide supports such as y-Al,0., TiO,, and S10,. The surface chro-
mium oxide is present as hydrated chromate and dichromate species on alu-
mina, hydrated chromate and possibly dichromate species on titania, and hy-
drated chromate and oligomeric species (dichromate, trichromate, and
tetrachromate) on silica. The monomer/oligomer ratio decreases with increas-
ing surface coverage. Further, it was shown that up to monolayer coverage (ca.
12% Cr0,/AL0, ca. 6% Cr0,/Ti0,, and ca. 3% Cr0,/Si0,) chromium oxide
is stabilized as Cr(VI), whereas crystalline Cr,0, is found above monolayer
coverage together with the hydrated chromium(VI) oxide surface species.
Crystalline Cr,0, is not stable at elevated temperatures ( >800°C), and was
found to react with alumina to form Cr(III) in solid solution with a-Al0,.

In the present paper, the influence of the loading and the support type (y-
Al,0,, Zr0,, TiO,, Si0,) on the surface chromium (VI) oxide structures are
studied under dehydrated conditions by in situ Raman and FTIR spectroscopy.
In addition to the investigation of the dehydrated surface chromium oxide
structures, the interaction of these species with the support surface hydroxyl
groups are also studied by monitoring the change in the OH stretching region
by FTIR spectroscopy.

Experimental

Sample preparation

The samples were prepared by the incipient-wetness impregnation method
with aqueous solutions of Cr(NO,), of increasing concentrations. The oxide
supports were y-Al,O; (Harshaw, 180 m?/g), SiO, (Cabot, Cab-0-Sil, 300 m?/
g), TiO, (Degussa P-25, 55 m?®/g), and ZrO, (Degussa, 39 m?/g). After the
impregnation step, the samples were dried at room temperature and at 110°C
overnight. Finally, the Cr0O,/Al,0, and CrQ,/ Si0, samples were calcined at
500°C overnight, while the CrO,/TiO, and CrO;/Zr0, samples were calcined
at 450°C for 3 hours. The surface coverages were expressed as wt.% of CrQ,,
assuming that the chromium cation was in the + 6 oxidation state after calci-
nation at 450-500°C. The + 6 oxidation state of the chromium cation for these
samples has been determined previously by XPS [19,21]. All samples were

recalcined for 2 h at 450°C in dry air prior to the Raman analysis to minimize
disturbing luminescence.
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Raman studies

The Raman spectra were recorded from stationary samples pressed into
self supporting wafers which were mounted into a modified version of a Raman
in situ cell developed by Wang and Hall [22]. The wafer was heated to 400°C
inca. 1 h and kept there for 1 h while ultra-high purity, hydrocarbon-free ox-
ygen (Linde gas) was used to purge the cell. Then the sample was cooled down
toca. 50°C in ca. 45 minutes. At this temperature the in situ Raman spectrum
was recorded on a Triplemate spectrometer (Spex, Model 1877) coupled to an
optical multichannel analyzer (Princeton Applied Research, Model 1463)
equipped with an intensified photodiode array detector (1024 pixels, cooled to
-35°C, resolution 2 cm~'). The 514.5 nm line of an argon ion laser (Spectra

Physics) was used as the excitation source. The laser power at the sample was
15-40 mW.

FTIR studies

The FTIR spectra were recorded on a Biorad FTS-7 spectrometer (reso-
lution 2 em~'). The samples were pressed into self-supporting wafers, and
mounted into a modified version of an in situ IR cell developed by Xu [23].
The experimental conditions were exactly the same as those used for the Ra-
man experiments. For monitoring the surface hydroxyl stretching region (4000
3000 cm '), self-supporting wafers of 8 mg (ca. 10 mg/cm?) were used and
1000 scans were averaged. These spectra were smoothed to improve the S/N
ratio. For recording the chromium-oxygen stretching region (1100-800 cm ,
the alumina, zirconia, and titania supported samples were pressed into self-
supporting wafers of ca. 5 mg (ca. 6 mg/ cm?), while the silica supported sam-
ples were pressed into wafers of 2 mg (ca. 2.5 mg/cm?). The chromium-oxygen
overtone region (2150-1850 cm ™~ ') was scanned for alumina and titania sup-
ported samples, having a weight of 20 mg (ca. 25 mg/cm?). The latter spectra
were baseline-corrected, to eliminate the sloping background, by subtracting
the IR spectra of the alumina and titania support, respectively.

Results

Surface chromium oxide species

Cr0,/ALO,

The Raman spectra of a series of dehydrated chromium oxides on alumina
samples are presented in Fig. 1 as a function of the chromium oxide coverage.
All samples (0.5-9% Cr0;/AlL,0;) reveal the same Raman bands at 1005, ca.

, 935 (shoulder), 880, ca. 770 (shoulder), ca. 600, 400, and ca. 300 cm— . With

increasing coverage, the strong 880 cm ™' band broadens, and thereby oversha-
| dows the shoulders at ca. 935 and ca. 770 cm~". The relative intensities of all
 the Raman bands, however, do not seem to change significantly with increas-
 ing surface coverage. At very low loadings (0.5 and 1%) additional weak Ra-
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Fig. 1. Raman spectra of Cr0;/AL,0, under dehydrated conditions. The chromium oxide loading
increases from 0.5 to 9%.
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l ! I
1100 1070 1040 1010 980

-1
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Fig. 2. IR spectra of 5 and 9% Cr0,/Al,0; under dehydrated conditions. The Cr=0 overtone region
is also shown.
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man bands are observed at ca. 480 and 310 cm - !, which are due to the quartz
window of the in situ Raman cell used in this study [24]. Figure 2 shows the
IR spectra of the 5 and 9% Cr0;/Al,0, samples under dehydrated conditions.
Both samples reveal two bands at 2010 and 1986 cm ™! in the first Cr=0 over-
tone region, and two bands at ca. 1020 and 1005 cm " in the Cr=0 stretching
region. IR bands of the surface chromium oxide species below 980 cm ™! are
obscured by strong absorptions of the alumina, while IR bands of the 0.5, and
1% Cr0;/Al,0, samples are too weak to be detected in both regions.

Cr0;/Ti0,

The Raman spectra of the dehydrated 1, 3, and 6% CrO, /Ti0, samples
are shown in Fig. 3. The spectra are presented in the 1100-700 cm ! region,
since titania exhibits strong Raman bands below 700 cm ™!, which prevents the
detection of chromium oxide bands in the lower frequency region. All Raman
spectra are similar with bands at ca. 1030 (shoulder), 1010, and ca. 870 cm .

The shoulder at ca. 800 cm~!, which is located at the low frequency side
of the broad ca. 870 cm ! band, is the second-order feature of TiO, [25]. This
shoulder is more pronounced in the 6% Cr0;/Ti0, sample, resulting in a broad
unresolved band between 750 and 900 ¢cm~'. The two high frequency chro-
mium oxide bands are also observed at ca. 1030 and ca. 1012 cm ' in the cor-
responding IR spectra (Fig. 4). Chromium oxide bands below 980 cm ™! could
not be detected in the IR due to the increase in the background of the spectrum.
Figure 4 also shows the chromium-oxygen overtone region for the three titania

Cr()S/Ti()Z

1010

1%

Raman intensity (arbitrary units)

1010

~1030

T T T T
1100 1000 900 800 700

Raman shift (cm™ )

2 Fig. 3. Raman spectra of Cr0O;/Ti0, under dehydrated conditions. The chromium oxide loading

increases from 1 to 6%.
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1100

Fig. 4. IR spectra of CrO,/Ti0, under dehydrated conditions. The chromium oxide loading in- JN&

creases from 1 to 6%. The Cr=0 overtone region is also included.

supported samples. Two bands, similar to those detected for the Cr0,/AlL0,
samples (see Fig. 2), are observed at 2015 and 1995 ¢cm ! for all three titania §
samples.

Cr0,/Zr0,
Figures 5 and 6 present the Raman and IR spectra of the Cr0;/Zr0, sam- |
ples, respectively, under dehydrated conditions as a function of the surface
coverage. Detection of chromium oxide bands below ca. 700 cm ! is not pos-
sible in both the Raman and IR spectra due to strong zirconia bands. The |
observed spectra are quite similar as a function of the loading with Raman |
bands at ca. 1030 (shoulder), 1010, 875, and ca. 850 (shoulder) cm~!, andIR §

absorptions at 1030, 1010, ca. 920 (shoulder), ca. 870 (shoulder), and ca. 85 J&

cm~'. The intensity ratio of the 875 and 850 cm~! bands is reversed in the -
Raman and IR spectra but this could be due to a rapid increase of the baseline ]
below 800 cm ™' in the infrared. The weak band at ca. 920 cm~! observedin
the IR spectra could not be resolved in the Raman spectra, and is most prob-
ably hidden under the broad and intense 875 cm~! band. The intensity ratio
of the 1030 and 1010 cm ™" bands is similar in both the Raman and IR spectrs,
but the 875 cm ~' band is more pronounced in the Raman than in the IR spectrs |
compared to the 1030 and 1010 cm ~ ! bands. IR absorptions in the chromium- |
oxygen overtone stretching region (2150-1850 cm~ ") could not be detectedfor -
the Cr0O;/ZrO, samples because of strong zirconia absorptions in this region. ,
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Fig. 5. Raman spectra of CrO,/Zr0, under dehydrated conditions. The chromium oxide loading
increases from 1 to 6%.
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fluorescence, it is difficult to observe well resolved chronium-oxygen vibra-
tions, but a Raman band at 986 cm ! is observed for both the 1 and 3% CrQ./
§i0, samples. The Raman spectrum of the 3% Cr0,/Sj0, samples further shows
aweak band at 550 cm~!, which points to the presence of a small amount of
crystalline Cr,0,, on the dehydrated surface [19]. Figure 8 shows the IR spec-
trum of SiO, in addition to the IR spectra of the 1 and 3% Cr0O,/ Si0, samples
under dehydrated conditions. The IR spectra are characterized by a moder-
ately intense peak at 800 cm ! due to the silica. On either side of this peak the
background spectra increase toward regions of total absorption above ca. 1000
em~" and below ca. 600 cm—!. Consequently, it was not possible to obtain IR
data for the 986 cm ' band observed in the Raman spectrum. In the so called
‘silica window’, a band at 905 cm ™' becomes more pronounced with increasing
surface coverage, and this band is assigned to a dehydrated chromium oxide

surface species. The 2150-1850 cm ! region does not present structural infor-

mation, since the silica support exhibits numerous bands in this region.

Support hydroxyl groups

Cr0,/AlL,0,

The OH stretching region of ALO,, 1, 5, and 9% Cr0,/AlL0, after stan-
dard oxygen pretreatment are shown in Fig. 9. Pure alumina exhibits three
major IR bands at 3775, 3730, and 3680 cm™ ', which have been assigned to
basic, neutral, and acidic OH groups, respectively [26]. The intensities of these
hydroxyl stretching bands, especially those of the basic and neutral hydroxyl

Cr0,/ALL0,
3680

3730

Absorbance (arbitrary units)

-1
wavenumbers (cm” ")

Fig.9. IR spectra of hydroxyl region of the Cr0,/AlL,0, samples. The IR spectrum of the alumina
L support is also shown.
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Cr0,/Ti0,

The IR spectrum of titania (Fig. 10) reveals bands at 3740, 3690, 3670, -
and 3640 cm ~', which is in agreement with the results of Busca et gl [27). .
The 3740 cm ' band has been assigned to a small amount of SiOH Impurities,
while the other three bands were identified as Ti-OH groups in different ¢g. -
ordinative situations. The band positions for anatase and rutile hydroxyl groups |
have been reported to be similar [28]. There has been o agreement in the

literature on the assignment of the OH.; bands. Some authors attributed the |
3690, 3670 cm ! bands to a bridged and is

tively, while others assign the 3690 and 364
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multiple Zr ions), and ca. 3480 cm ™' (hydrogen-bonded hydroxyl groups) (see

Fig. 11) [30]. The deposition of ch

cm™ ! respectively ), but does not appear to titrate the hydrogen-bonded hy-
droxyl groups (band at cq. 3480 cm~!). At monolayer coverage (6% Cr0,/
Zr0,) the IR spectrum still shows the pr

bonded to one or more multiple Zr ions.

Cr0,/Si0,

The hydroxyl region of Si0, is presented in Fig. 12 in addition to the spec-
tra of 1 and 3% CrO,/ SiO,. The IR spectrum of silica shows a sharp band a
3740 cm ! and a broad shoulder at ca. 3685 cm—
to an OH group bonded to one Sj ion and a hydrogen-bonded (vicinal) hy-
droxyl group, respectively [26]. The isolated hydroxyl groups are partly re-

, while the vicinal surface silanol groups
do not seem to be influenced, as revealed by the

¢cm ™' band compared to the broad ca. 3685 cm ™! band.

Discussion

Surface chromium oxide structures

Recently, Deo and Wachs proposed a model to predict the molecular strue-
tures of surface metal oxide species on different oxide supports (MgO, Al,0,,
Zr0,, TiO,, and Si0,) under ambient conditions [31]. It was found, that under
ambient conditions the support surface is hydrated and that the surface metal
oxide species are basically in an aqueous medium. Consequently, the hydrated
surface metal oxide structures are similar to the structures observed in aqueous
solutions. The hydrated surface metal oxide molecular structures were found
to be dependent on the net pPH at which the surface possesses zero surface
charge. The net pH at point of zero surface charge is determined by the com-

The adsorbed moisture on the oxide
ditions, desorbs upon heating and the surface metal oxide overlayer becomes
dehydrated. As a consequence of the model proposed by Deo and Wachs, the
molecular structures of the surface metal oxide phases must generally be al-

ce pH can only exert its influence via

een confirmed experimentally by the
present investigation, since the observed Raman spectra, recorded under de-

hydrated conditions, differ strongly from those obtained under ambient con-
ditions [19-21]. The Raman and IR band positions of the dehydrated chro-
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*Only the chromium oxide vibrations are shown.
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favour of the latter. This is because it is very unlikely that reduction can de-
stroy a certain bond without influencing the other bonds within the same
structure. Thus, the different bands are tentatively assigned to different sur-
face chromium oxide species, whose relative concentrations appear not to vary
with loading.
- This assignment can be made by considering the Raman and IR spectra
B of chromium oxide reference compounds. Table 2 summarizes the Raman and
IR band positions of the most relevant reference compounds. The Cr®* cation
can be surrounded by four (CrO3~ (aq) ), three (CsCr0O,Br), two (Cr0O.Cl,),
orone (CrOF,) terminal oxygen(s) [32]. The tetrahedrally coordinated chro-
mium cation can also be dimeric ((NH,),Cr,0,), trimeric (K,Cr,0,,), and
tetrameric (K,Cr,0,,) [33]. Finally, crystalline CrO; possesses a chain struc-
ture of CrO, tetrahedra with two terminal Cr=0 bonds and two bridging Cr-O
bonds for each Cr®* cation [33]. The most intense band in the Raman spectra
of trichromate and tetrachromate at 818 cm~' was originally assigned to
¥, (CrOCr), while the very weak band at 518 cm ! was attributed to v, (CrOCr)
[33]. As pointed out in a previous article, this assignment is rather improbable,
since symmetric stretching modes are usually more intense in the Raman than
the corresponding antisymmetric stretching modes [20]. Therefore, the in-
tense 818 cm ! band is assigned to the symmetric stretching mode of the O-
Cr-0 bond with both oxygen bridging to other chromium cations. In both as-
signments, however, the intense 818 cm ™' band is attributed to vibrations,
which are associated with the bridging chromium oxide bonds. These reference
Raman and IR spectra reveal that the band position of the symmetric stretch-
ing mode (and consequently the bond strength) increases in the following or-
der: v,(OCrO) < v,(Cr0;) < v,(Cr0,) < »(Cr0).

The very high frequency positions of 1030 cm™ ' and 1010 cm ! ( CrO,/
Ti0, and Cr0,/Zr0,), and 1020 and 1005 ecm ™' (Cr0,/Al,0,), reflect very
short chromium-oxygen bond distances, and are only consistent with two sur-
face species, each having one short terminal Cr=0 bond (mono-oxo0). A dioxo
structure (O=Cr=0), as proposed by Cimino et al. [14], would give rise to a
symmetric and an antisymmetric stretching mode, the former being more in-
tense in Raman and the latter more strongly allowed in the infrared spectrum.
This is not reflected in our data, since the 1030 (or 1020) cm~" and 1010 (or
1005) cm~' bands have similar relative intensities in both the Raman and IR
gpectra, indicating the presence of two mono-oxo structures. The two bands in
| theIR overtone region at 2015 and 1995 cm ™" (Cr0,/Ti0,) and 2010 and 1986
- em~! (Cr0,/AL0,) are assigned to the overtones of the 1030 and 1010 cm !
 bands and 1020 and 1005 cm ! bands, respectively. The presence of two bands
- inthe overtone region supports the presence of two surface Cr=0 species, since
a dioxo structure would give rise to several combination bands. Mono-oxo
chromium oxide species have also been identified on the surface of crystalline

a-Cr,0; by IR spectroscopy through '#Q-160 adsorption exchange experi-
- ments [34].




The intense 880-870 cm™

cations. The presence of oligo
400, and ca. 300 cm~! bands

which are assigned to V,.(CrOCr), v,(CrOCr), 0(Cr0,), and 0(0Cr0), re
spectively. The shoulder at ca. 935 cm ™' may be attribu
stretching mode of CrO, units, which ter
is very weak in the spectra of CrO,/Zr0,, which points to rather long chain
structure on the zirconia support. This is i

intensity of the 875 ¢cm ! band compared to the alumina
The shoulder at 850 ¢m - in the spectra of CrQ.

of another polymer on the zirconia surface with slightly different OCrO bond /
distances or indicates the presence of different OCrO bond distances within
the same polymer. In fact the broadness of the 880-850 ¢ ! bands in all the
spectra indicates a wide range of OCrO bond distances. Thus, two Cr=0 species
with bands at 1030 (1020) and 1010 (1005) cm ™', and one (or more) poly-
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Support hydroxyl groups

The observed chromium oxide vibrations reveal which type of terminal
chromium-oxygen bonds the surface species possess, or whether these species
are isolated or polymerized, as discussed ahove., Information about the Cr—0O-
support interaction, however, has not been obtained since Cr-O-support vi-
brations, which are expected to be found below 800 cm - ', have not been oh-
served in the Raman spectra. This is not unique, since metal-oxygen-support
vibrations have also not been observed for other supported metal oxide sys-
tems, e.g., supported rhenium oxide, molybdenum oxide, and tungsten oxide
[24]. The absence of this Raman mode indicates (partly) ionic character of
the Cr-O-support bond, which results in a very low Raman intensity because
of the decrease of polarizability. Vibrations of bonds with more ionic character
are much more visible in the infrared, however, bands below 800 cm~! are
obscured in the infrared by the strong support bands.

Some information on the nature of the oxide support surface, and its in-
teraction with surface metal oxide species can be provided by examining the
s. The various types of surface hydroxyl groups pres-
enton AL, 0., Ti0,, ZrO,, and Si0, have been discussed in Results. The gradual
disappearance of the surface hydroxyl groups of all four supports upon addition
of chromium oxide suggests that the chromium oxide species bonds to the sur-

It has been found, however, that
even at coverages approaching monolayer, not all the surface hydroxyl groups

, | are removed. In fact, the hydroxyl groups of TiO,, Zr0,, and Si0, with fre-
W quency positions at 3640, ca. 3480, and ca.

& effected by the presence of surface chromium oxide. The
B et completely clear, but could be due to inaccessible pos

3685 cm ™', respectively, are not
reason for this is not
itions on the surface
Si0, [26]. Another
onded to the corre-

a8 has been reported for the vicinal hydroxyl groups of
reason could be that these hydroxyls are very strongly b
sponding surfaces and, therefore, not easily removed. A comparison of the four
supports reveals that on Al 0,4, TiO,, and Zr0O,, more than one type of surface
bydroxyl group is removed by addition of chromium oxide, whereas on silica
only one type of hydroxyl group is titrated. This difference may explain why
onthe AL,O,, TiO,, and Zr0.,, various types of surface chromium oxide species
a mainly isolated species are present. It should,
apparently the interactions of chromium oxide
onia surface sites have little influence on the spe-
e structures, since the same Raman and IR bands
above. A similar observation has recently been re-
ium and rhenium oxide, and it was argued that the

however, also be noted that

noted that our data cannot exclude the possibility
oxide species interact with support Lewis acid sites
(coordinated unsaturated sites), since this reaction would not effect the sur-
face hydroxyl groups, and, thus, it was not observed in our IR spectra.
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Conclusions

Species possessing one terminal Cr=0 bond (mono-oxo)
with bands at 1030 (1020) and 1010 (1005) em !, and one (or more) poly-

mer(s) possessing a strong band at 880-850 cm !, are proposed to be present

on the dehydrated alumina, titania, and zirconia surfaces. The relative ratio of

;' these different chromium oxide species appeared to be essentially independent
" of chromium oxide loading, si

R band positions and rela |
i tive intensities do not change signj

| species Possessing a terminal CrO; unit, isolated
b disappearance of the
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